
Présentation P7
Mise en place d'une
chaîne CI/CD avec
l'Infrastructure as Code
(IaC)

Août
2025

CréaLogiciels Soutenue par
Ayaka MAJAULT

Automatiser le déploiement continu des applications (frontend/backend) pour une livraison plus rapide et
une gestion d'infrastructure efficace.

Contexte

1. Analyse et Planification

Analyse des stacks technologiques existantes et des besoins CD.
Élaboration d'un plan d'action et des solutions IaC adaptées.

2. Conception et Développement de l'IaC

Conteneurisation : Docker pour isoler les applications.
Orchestration : Kubernetes et Helm pour gérer les déploiements et la performance.
Déploiement : Terraform et Ansible pour provisionner l'infrastructure AWS (EKS) et automatiser le
déploiement.

3. Intégration et Validation

Mise en place d'un pipeline GitLab CI/CD automatisé.
Intégration du build, des tests, du scan de sécurité (Trivy) et du déploiement.
Validation par des tests rigoureux de l'application et de l'infrastructure.

4. Documentation et Bonnes Pratiques

Création d'un Document préparatoire et d'un Plan de CD complet avec captures d'écran.
Rédaction d'un Guide des bonnes pratiques CD pour la maintenance future.

💡 Constat Clé

🎯 Objectif

Standardiser et
automatiser avec des
outils modernes (GitLab
CI/CD, K8s, Terraform,
Ansible)

Problèmes Actuels - Synthèse

Automatisation et
orchestration insuffisantes:
Jenkins + scripts manuels, et
tests et des déploiements
sont peu automatisés,
k8s/Terraform manquent →
agilité limitée

Architecture globale

Structure du Repo

1️⃣ Build (Compilation)
Frontend : Compilation Angular avec npm.
Backend : Compilation Java avec Maven.
👉 Résultat : artefacts prêts pour les tests et la construction
des images.

2️⃣ Test (Vérification)
Frontend : Tests end-to-end avec Cypress.
Backend : Tests unitaires avec Maven (JUnit).
👉 Résultat : validation de la qualité du code avant packaging.

3️⃣ Package (Construction des images Docker)
Construction des images frontend et backend avec Kaniko.

Push automatique vers le GitLab Container Registry.
👉 Résultat : images prêtes à être déployées.

4️⃣ Security Scan (Vérification sécurité)

Analyse des images Docker avec Trivy.

Détection des vulnérabilités critiques ou hautes.
👉 Résultat : sécurité renforcée avant déploiement.

5️⃣ Helm Package (Gestion des chartes Helm)

Validation des charts Helm (helm lint).

Création des packages Helm pour frontend & backend.

Simulation de déploiement (helm template --dry-run).
👉 Résultat : manifestes Kubernetes valides et versionnés.

 .gitlab-ci.yml

1️⃣

1️⃣

2️⃣

2️⃣

3️⃣

4️⃣

5️⃣

6️⃣ Deploy (Déploiement automatisé)

Stage deploy-k3s :
Utilisation d’une image Alpine avec Helm et installation de kubectl.
Décodage du kubeconfig encodé en Base64 et configuration de l’accès au
cluster K3s.
Déploiement des charts Helm pour frontend et backend sur le cluster cible.
Vérification que les pods sont bien créés et opérationnels (kubectl get pods
-o wide).

👉 Résultat : applications déployées sur K3s, prêtes à être utilisées. C’est une
démonstration locale et légère : K3s permet de montrer rapidement que le
pipeline sait construire les images, appliquer les charts Helm et lancer les
pods.
But : prouver que la chaîne CI/CD fonctionne de bout en bout dans un
environnement maîtrisé.

Terraform :
Création et configuration de l’infrastructure AWS (EKS, IAM, VPC, etc.). Ici,
on passe à l’échelle infrastructure : Terraform automatise la création de
tous les composants AWS (EKS, VPC, IAM…).
But : montrer l’Infrastructure as Code (IaC), reproductible et versionnée.
Plus besoin de configurer AWS manuellement.

Ansible :
Une fois l’infrastructure en place, Ansible prend le relais pour installer et
configurer les applications (via Helm sur le cluster Kubernetes).

👉 But : séparer la logique infra (Terraform) de la logique applicative (Ansible).

🎯 Emphase
👉 Cette chaîne CI/CD automatise entièrement :

la compilation
les tests
le contrôle de sécurité
le packaging applicatif
le déploiement de l’infrastructure et des applications

⚡ Cela élimine les étapes manuelles, réduit les erreurs humaines et accélère
la mise en production.

 .gitlab-ci.yml 6️⃣

La conteneurisation avec Docker

Objectif (pourquoi Docker ?)
Isoler l’application et ses dépendances pour garantir un
environnement d’exécution cohérent et reproductible.
Faciliter le déploiement de bout en bout dans la chaîne
CI/CD.

Dockerfiles (où et pour quoi ?)
Frontend : front/Dockerfile

Build de l’app Angular puis serving statique via Nginx
(front/nginx.conf).

Backend : back/Dockerfile
Packaging de l’app Java (Spring Boot) en image
exécutable.

Chaîne de build & push (CI/CD GitLab)

Construction des images avec Kaniko (job docker-build-
push).
Push vers GitLab Container Registry :

 Frontend → registry.gitlab.com/majayaka/oc-p7/front
 Backend → registry.gitlab.com/majayaka/oc-p7/back

Cache de couches dédié pour accélérer les builds :

--cache=true
--cache-repo registry.gitlab.com/majayaka/oc-
p7/cache/frontend
--cache-repo registry.gitlab.com/majayaka/oc-
p7/cache/backend
--cache-ttl=168h

Pourquoi Kaniko ? (le choix technique)

Sans démon Docker : pas besoin de Docker-in-Docker ni de
privilèges élevés → sécurité renforcée sur les runners.
Intégration CI facile : s’exécute dans un container, pousse
directement vers le registry.
Performances : réutilisation des couches via un cache de
registry séparé (front/back).

Point clé à retenir

Nous n’avons pas seulement “mis Docker partout” : nous avons
choisi Kaniko pour sécuriser et fiabiliser la construction en CI,
et séparé les caches pour accélérer les builds — un choix
guidé par la sécurité, la vitesse et la reproductibilité.

La conteneurisation avec Docker

Chaîne de build & push (CI/CD GitLab)

Rôle de K3s :
Automatisation du déploiement, de la mise à l’échelle et de la gestion des
applications conteneurisées.
Assure la haute disponibilité et la résilience des services.

Utilisation de Helm :

 Templatisation des manifestes Kubernetes pour simplifier des configurations
complexes.
 Charts Helm distincts créés pour le frontend (helm-front) et le backend
(helm-back).
 Chaque chart gère ses propres objets Kubernetes (Deployment, Service,
Ingress, etc.) via les fichiers suivants :

templates/deployment.yaml → génère les ressources Deployment pour
exécuter les pods.
templates/service.yaml → définit les Services qui exposent les pods.
templates/ingress.yaml → configure les règles Ingress pour l’accès
externe.

 Fichiers de valeurs (values-main.yaml) pour adapter facilement les
déploiements de main branch.

L'orchestration avec K3s et Helm

Définit les valeurs spécifique de Frontend (ex: image, ports,
réplicas, etc.)utilisées lors du rendu des templates

Définit les valeurs spécifique de Backend (ex: image, ports,
réplicas, etc.)utilisées lors du rendu des templatess

Définir des règles de nommage cohérentes et assurer la mutualisation
des labels et annotations à travers tous les manifestes Kubernetes.
Kubernetes Deployment manifest

Kubernetes Service manifest

Définir des règles de nommage cohérentes et assurer la mutualisation
des labels et annotations à travers tous les manifestes Kubernetes.

Kubernetes Ingress manifest

Kubernetes Deployment manifest
Kubernetes Ingress manifest

Kubernetes Service manifest

💡 Élément visuel

Capture d’écran d’un k3s deploy réussi.

 Terraform
Provisionnement codifié : création automatique du cluster EKS AWS, VPC, sous-
réseaux et rôles IAM.
Reproductibilité garantie : chaque exécution applique les mêmes règles
d’infrastructure.
Gestion du changement : suivi versionné des évolutions infra via GitLab.

 Ansible

Déploiement applicatif : installation des charts Helm (frontend et backend) sur le
cluster provisionné.
Intégration fluide : récupération du nom du cluster depuis Terraform et passage
comme variable aux playbooks.
Flexibilité : gestion fine de la configuration via les collections amazon.aws,
community.aws, kubernetes.core.

🎯 Point clé

👉 Synergie Terraform + Ansible : démonstration concrète d’un déploiement de bout
en bout, de l’infrastructure jusqu’aux applications, dans une seule étape du pipeline
CI/CD.

Déploiement de l’infrastructure avec
Terraform et Ansible

 💡 Élément visuel

Capture d’écran d’un terraform apply réussi (cluster créé).

Documents à
presenter

Plan de CD Guide des bonnes pratiquesDocument préparatoire

https://acrobat.adobe.com/id/urn:aaid:sc:eu:e7ef03d6-2584-41e7-a8f1-1845ae441ae5
https://acrobat.adobe.com/id/urn:aaid:sc:EU:ba6b7a19-ce81-495e-bdc6-64d6fcf907a6
https://acrobat.adobe.com/id/urn:aaid:sc:EU:9e1f9576-2131-425e-8a43-6cdb6ffc4663

Merci !

Août 2025

