Aout

Presentation P7 v
Mise en place d'une

chaine CI/CD avec
I'Infrastructure as Code
(IaC)

Créalogiciels SENTERE [BAT

Ayaka MAJAULT

Contexte

Automatiser le déploiement continu des applications (frontend/backend) pour une livraison plus rapide et

une gestion d'infrastructure efficace.

1. Analyse et Planification

o Analyse des stacks technologiques existantes et des besoins CD.
o Elaboration d'un plan d'action et des solutions laC adaptées.

2. Conception et Développement de l'laC

e Conteneurisation : Docker pour isoler les applications.
e Orchestration: Kubernetes et Helm pour gérer les déploiements et la performance.
e Déploiement : Terraform et Ansible pour provisionner l'infrastructure AWS (EKS) et automatiser le

déploiement.

3. Intégration et Validation

e« Mise en place d'un pipeline GitLab CI/CD automatisé.
e Intégration du build, des tests, du scan de sécurité (Trivy) et du déploiement.
e Validation par des tests rigoureux de l'application et de l'infrastructure.

4. Documentation et Bonnes Pratiques

e Création d'un Document préparatoire et d'un Plan de CD complet avec captures d'écran.
e Rédaction d'un Guide des bonnes pratiques CD pour la maintenance future.

Problémes Actuels - Synthése -

Catégorie

cljcp

Seécurité

Qualité logicielle

Git [GitLab

Registre Docker

Portabilité

Maintenance

Orchestration

Déploiement

d'infrastructure

Problémes détectés

Pipelines Jenkins peu développés
Déclenchements manuels

Faible couverture de tests

Accés non standardisé aux scripts
Pas de scans de vulnérabilités
systématiques

Journalisation limitée

Tests automatisés manquants
Documentation obsoléte ou

incompléte

Utilisation limitée & Jenkins
Pas de pipelines GitLab

Secrets non intégrés

Images construites manuellement
via scripts

Pas de cache ni scan intégré

Déploiements manuels pau
reproductibles

Pas d'orchestration

Forte dépendance aux scripts
Bash
Compétences DevOps inégales

Kubemetes absent

Ansible sous-utilisé

Provisionnement manuel

Pas d'laC (Terraform absent)

Solutions proposées

Pipelines GitLab CIfCD avancés (tests, build, scan,
déploiemeant)

Automatisation compléte

Imtégration de Trivy pour les images
Gestion sécurisée des secrets (GitLab, Vault)

Audit et logs renforcés

Ajout de tests unitaires/intégration

Documentation centralisée et a jour

GitLab CI/CD comme orchestrateur unique
Utilisation de GitLab Secrets

CI/CD avec Kaniko
Scan Trivy
Cache Docker Reqistry

Conteneurisation systématique

Kubemetes pour orchestrer et standardiser

Formation Kubernetes/Ansible/Terraform

Standardisation des processus

Déploiement Kubernetes (k3s local, AWS avec Terraform)

Automatisation via Ansible

Terraform pour I'laC

Ansible pour la configuration

Constat Cle

Automatisation et
orchestration insuffisantes:
Jenkins + scripts manuels, et
tests et des déploiements
sont peu automatises,
k8s/Terraform manquent —
agilité limitée

@ Objectif

Standardiser et
automatiser avec des
outils modernes (GitLab
CI/CD, K8s, Terraform,
Ansible)

Architecture globale

EIED

mm e g
tbuild-fro thldbkdhbldh iy
) HELM

: @ Mavan

ttf nt test-back

Structure du Repo

3 does/fimg

a £ front

elil helm-back

o £9 helm-front

< .gitignore

¢ .gitmodules

README.md

|- Dockerfile

|- nginx.conf

|- tsconfig.app.json

|- README.md

|- package- .json

|- tsconfig.json

|- angular.json

|- package. json

|- tsconfig.spec.json

|- karma.conf.js

L src

I app

- app.component.html
|- app.component.scss
|— app.component.spec.ts
|- app.component.ts
- app.module.ts

| L joke.model.ts
L services

|— jokes.service.spec.ts

|
|
|
|
|
| |- model
|
|
|
|

- jokes.service.ts
|- assets
- environments
| |- environment.prod.ts
| L environment.ts
|- favicon.ico
= .html
- main.ts
- polyfills.ts
- proxy.config.json
- styles.scss
L test.ts

,,,,,,,,,,,,,,,,,,,,,

- main
- java
| L com
| L openclassrooms
| L bobapp
| |- BobappApplication.java
| - controller
| | - JokeController.java
| |- data
| | = JsonReader.java
| |~ model
| | ' Joke.java
| L service
| L~ JokeService.java
L resources
|— application.properties
—
L~ jokes.json
L test
L java
- com
- openclassrooms
- bobapp

L BobappApplicationTests. j

,,,,,,,,,,,,,,,,,,,,,,

|- deploy-eks.yml
- deploy.yml
L inventory
- roles
L app
L~ tasks
L main.yml
(terraform |
- main.tf
- output.tf
- provider.tf
|- terraform.tfstate
- terraform.tfvars
L- variables.tf
docs
- img
L devops.ijpg

o |- helm-front

|- Chart
|- values—-main
- templates
- _helpers
|- deployment
|- ingress
L service

|- Chart
|- values-main
- templates
- _helpers
|- deployment
|- ingress
- service

gitlab-cr.yml

Build (Compilation)
Frontend : Compilation Angular avec npm.
Backend : Compilation Java avec Maven.
Résultat : artefacts préts pour les tests et la construction
des images.

Test (Vérification)
Frontend : Tests end-to-end avec Cypress.
Backend : Tests unitaires avec Maven (JUnit).

Résultat : validation de la qualité du code avant packaging.

Package (Construction des images Docker)
Construction des images frontend et backend avec Kaniko.

Push automatique vers le GitLab Container Registry.
Résultat : images prétes a étre déployées.

Security Scan (Vérification sécurité)
Analyse des images Docker avec Trivy.

Détection des vulnérabilités critiques ou hautes.
Résultat : sécurité renforcée avant déploiement.

Helm Package (Gestion des chartes Helm)
Validation des charts Helm (helm lint).
Création des packages Helm pour frontend & backend.

Simulation de déploiement (helm template --dry-run).
Résultat : manifestes Kubernetes valides et versionnés.

.gitlab-ci.yml 8.52 Kig

st

build
test
- package
- security-scan
- helm-package
deploy-k3s

- deploy

ER: overlay2
TEND: registry.gitlab.com/majayaka/oc-p7/front

registry.gitlab.com/majayaka/oc-p7/back

¥: recursive

${CI_PIPELINE_ID}

: node:latest
: build

a_script:
npm cache clean force
- cd front
- npm ci
npm avdit fix force || true

npx Bangular/eli build optimization

- front/dist
front/packagex.json
front/node_modules/

tags: [new-runner]

key: { files: [front/package.json] }
paths: [front/node_modules/]

: maven:3.9.9
je: build

- ¢d back
- mvn clean install -DskipTests

pat H
back/target/

- back/.m2frepository/
[new-runner]

: files: [back/pom.xml] }
paths: [back/.m2/repository/]

: ger.io/kaniko-projectfexecutor:vl.23.2-debug

[==]

BUILD: "true"
ript:
 -p fkaniko/.docker
echo "{\"auths\":{\"$CI_REGISTRY\":{\"auth\":\"$(printf "%s:%¥s" "${CI_REGISTRY_USER}" "${CI_REGISTRY_PASSWORD}" | based4 | tr

echo "Building frontend image..."
/kaniko/executor
context "${CI_PROJECT_DIR}/front" \
--dockerfile "${CI_PROJECT_DIR}/front/Dockerfile"
--destination "${CONTAINER_FRONTEND}" \
--gcache=true \
cache-repo "registry.gitlab.com/majayvakaSfoc-p7/cache/frontend” \
cache-tt1=148h

-]
echo "Building backend image..."
/kaniko/executor \
--context "${CI_PROJECT_DIR}/back® \
--dockerfile "${CI_PROJECT_DIR}/back/Dockerfile" \
--destination "${CONTAINER_BACKEND}" \
--cache=true \

cache-repo "registry.gitlab.com/majayaka/oc-p7/cache/backend” \
--cache-ttl=168h

[build-front, build-back]
tags: [new-runner]

d

cypress/browsers:latest
test
[build-front]

Cript:
- ¢d front

CHROME_BIN=/opt/google/chrome/chrome npx @angular/cli test --no-watch

arti ts

[front/test-resvlts.log]
[new-runnar)

{ files: [front/package.json] }
[front/node_modules/]
y: pull

maven:3.9.9
: test
[build-back]

cd back
- mvn test
artifacts:

paths: [back/target/surefire-reports/]

35: [new-runner]
o

{ files: [back/pom.xml] }
paths: [back/.m2/repository/]
policy: pull

browsers=Chromel

aguasec/trivy:latest
t: ("]

: security-scan

= mkdir -p trivy-results

- trivy image --exit-code 1 --severity HIGH,CRITICAL "$CONTAINER_FROMTEND" > triwvy-results/front-scan.txt || true
- trivy image --exit-code 1 --severity HIGH,CRITICAL "SCONTAINER_BACKEND" > trivy-results/back-scan.txt || true
w_failure: true

[docker-build-push]

¢ [trivy-resuvlts/
: always
[new-runner]

*$CI_COMMIT_BRANCH == "main®’

i-package:

: alpine/helm:latest
rypoint: [""]
helm-package
SCraipt:

apk add no-cache git

- gcho "Linting Helm charts with specific values..."

- helm lint helm-front/ --values helm-front/values-main.yaml

- helm lint helm-back/ --wvalues helm-back/values-main.yaml || eche "helm-back not ready yet, skipping..."
echo "Packaging Helm charts..."

- mkdir -p helm-packages

- helm package helm-front/ --version ${HELM_CHART_VERSION} --destination helm-packages/

- helm package helm-back/ --

- gcho "Testing Helm charts

h dey-run..."

helm template frontend helm-front/ valves helm-front/values-main.yaml dry=run

- helm template backend helm-back/ --values helm-back/values-main.yaml --dry-run || echo "helm-back not ready yet, skipping...'

- echo "Validating Hubernetes manifests..."

- helm template frontend helm-front/ --wvalues helm-front/values-main.yaml > frontend-manifests.yaml

- helm template backend helm-back/ -values helm-back/values-main.yaml > backend-manifests.yaml || echo "helm-back not ready yet,

ho "Generated Helm packages:"
-la helm-packages/
[docker-build-push]

helm-packages/
- frontend-manifests.yaml
- backend-manifests.yaml
re_in: 1 hour
[new-runner]

if: "$CI_COMMIT_BRANCH == “"main"'

sion ${HELM_CHART_VERSION} --destination helm-packages/ || echo "helm-back not ready yet, skipping..

-

gitlab-cr.yml >

Deploy (Déploiement automatisé)

Stage deploy-k3s:
« Utilisation d’'une image Alpine avec Helm et installation de kubectl.
« Décodage du kubeconfig encodé en Base64 et configuration de l'accés au
cluster K3s.
» Déploiement des charts Helm pour frontend et backend sur le cluster cible.
« Vérification que les pods sont bien créés et opérationnels (kubectl get pods

-o wide).
Résultat : applications déployées sur K3s, prétes a étre utilisées. C'est une >>
démonstration locale et légere : K3s permet de montrer rapidement que le
pipeline sait construire les images, appliquer les charts Helm et lancer les
pods.
But : prouver que la chaine CI/CD fonctionne de bout en bout dans un
environnement maitrisé.

Terraform:

« Création et configuration de linfrastructure AWS (EKS, IAM, VPC, etc.). Ici,
on passe a l'échelle infrastructure : Terraform automatise la création de
tous les composants AWS (EKS, VPC, |IAM...).

« But: montrer U'Infrastructure as Code (laC), reproductible et versionnée.
Plus besoin de configurer AWS manuellement.

Ansible:
« Une fois linfrastructure en place, Ansible prend le relais pour installer et
configurer les applications (via Helm sur le cluster Kubernetes).
But : séparer la logique infra (Terraform) de la logique applicative (Ansible).

© Emphase
Cette chaine CI/CD automatise entiérement :
« la compilation
+ lestests >>
» le controle de sécurité

« le packaging applicatif
« ledéploiement de linfrastructure et des applications

Elément visuel o
Capture d'écran d’'un pipeline GitLab réussi (toutes les étapes vertes §4).

Cela élimine les étapes manuelles, réduit les erreurs humaines et accélére

la mise en production. >> ' I Editgitlab-ci..yml

Group jobs by Job depandencies

— tont package —— hulm-package — doploy

test-back o) docker-bulld-push e o ~ | heim-check-and-package o o) infra-and-deplay

tast-framt

La conteneurisation avec Docker

La conteneurisation avec Docker

oc-p7 / front / Dockerfile [3

Find file Blame
Objectif (pourquoi Docker ?)

» Isoler lapplication et ses dépendances pour garantir un
environnement d’exécution cohérent et reproductible.

« Faciliter le déploiement de bout en bout dans la chaine Dockerfile @ clc52224 oc-p7 |/ back / Dockerfile [
a authored 7 hours ago .
Cl/CD.
Dockerfiles (ou et pour quoi ?) erfiI.E
» Frontend : front/Dockerfile brfile 273 B
o Build de 'app Angular puis serving statique via Nginx

(front/nginx.conf). FROM node:latest as build
+ Backend : back/Dockerfile

o Packaging de l'app Java (Spring Boot) en image
exécutable.

it Dockerfile
bka authored 1 week ago
WORKDIR fusr/local/fapp

COPY packagex.json ./ .
erfile 399 B

Chaine de build & push (CI/CD GitLab) RUN npm ci

Build
FROM maven:3.9.5-eclipse-temurin-17 AS build
WORKDIR fworkspace

e Construction des images avec Kaniko (job docker-build-
push).
o Push vers GitLab Container Registry :

COPY

RUN npm run build
COPY pom.xml /workspace/

o Frontend — registry.gitlab.com/majayaka/oc-p7/front) X
RUN mvn dependency:go-offline -B

o Backend — registry.gitlab.com/majayaka/oc-p7/back FROM nginx:latest as production

COPY src fworkspacefsrc/
RUN mvn -B -f pom.xml clean package -DskipTests

e Cache de couches dédié pour accélérer les builds : COPY nginx.conf fete/n gin;{fcgnf .d/default.conf

COPY --from=build fusr/local/fapp/dist/bobapp fusr/share/nginx/html
e --cache=true

e --cache-repo registry.gitlab.com/majayaka/oc-

XPOSE 80 # --- Run Stage ---
p7/cache/frontend SAPOSE 8 14 __I _ = ; IRE
« --cache-repo registry.gitlab.com/majayaka/oc- # Eclipse Temurin JRE
p7/cache/backend FROM eclipse-temurin:17-jre-jammy

e --cache-ttl=168h

WORKDIR fapp
COPY --from=build /workspace/target/*.jar app.jar
ENTRYPOINT ["java", "-jar", "app.jar"]

Pourquoi Kaniko ? (le choix technique)

e Sans démon Docker : pas besoin de Docker-in-Docker ni de
privileges élevés — sécurité renforcée sur les runners.

* Intégration Cl facile : s'exécute dans un container, pousse
directement vers le registry.

o Performances: réutilisation des couches via un cache de
registry séparé (front/back).

7/cache/frontend™ %

Point clé a retenir

Nous n‘avons pas seulement “mis Docker partout” : nous avons
choisi Kaniko pour sécuriser et fiabiliser la construction en Cl,
et séparé les caches pour accélérer les builds — un choix
guidé par la sécurité, la vitesse et la reproductibilité.

L'orchestration avec K3s et Helm

Chaine de build & push (CI/CD GitLab)

* RoledeK3s:
o Automatisation du déploiement, de la mise a l'échelle et de la gestion des
applications conteneurisées.
o Assure la haute disponibilité et la résilience des services.

o Utilisation de Helm:

o

Templatisation des manifestes Kubernetes pour simplifier des configurations
complexes.
Charts Helm distincts créés pour le frontend (helm-front) et le backend
(helm-back).
Chaque chart gere ses propres objets Kubernetes (Deployment, Service,
Ingress, etc.) via les fichiers suivants::
= templates/deployment.yaml — génére les ressources Deployment pour
exécuter les pods.
= templates/service.yaml — définit les Services qui exposent les pods.
= templates/ingress.yaml — configure les régles Ingress pour l'acceés
externe.
Fichiers de valeurs (values-main.yaml) pour adapter facilement les
déploiements de main branch.

o

[}

[}

Lors de la pipeline GitLab CI/CD, ces templates sont utilisés a plusieurs étapes:
1.Vérification (Lint)
= helm lint helm-front/ --values helm-front/values-main.yaml
» |ci, le moteur de templating de Helm analyse les fichiers templates/*.yaml
et valide leur cohérence.
2.Packaging
» helm package helm-front/ ...
» Les fichiers templates/*.yaml sont inclus dans l'archive Helm, préte & étre
déployée.
3.Rendu des manifestes Kubernetes
= helm template frontend helm-front/ --values helm-front/values-
main.yaml --dry-run >Le chart helm-front est rendu en utilisant le fichier
values-main.yaml pour générer les manifestes Kubernetes et les afficher,

- helm-front
|- Chart
|- values-main

|

|

| L templates

| - _helpers

| |- deployment
| |- ingress
|

(.

L service
helm-back
|- Chart
|- values-main
- templates
- _helpers
|- deployment
|- ingress
L service

Définit les valeurs spécifique de Frontend (ex: image, ports,
réplicas, etc.)utilisées lors du rendu des templates

Définir des regles de nommage cohérentes et assurer la mutualisation
des labels et annotations a travers tous les manifestes Kubernetes.

Kubernetes Deployment manifest
Kubernetes Ingress manifest
Kubernetes Service manifest

Définit les valeurs spécifique de Backend (ex: image, ports,
réplicas, etc.)utilisées lors du rendu des templates

Définir des regles de nommage cohérentes et assurer la mutualisation
des labels et annotations a travers tous les manifestes Kubernetes.

Kubernetes Deployment manifest
Kubernetes Ingress manifest

Kubernetes Service manifest

yet, skipping..."

| echo "helm-back ni and-package

run
L -=dry-run || echo "helm-back not rea

mL > frontent

> backend-ma

-L -5 https://dL.kBs.io/release/stable. txt) /bin/linux/s

mais sans les appliguer au cluster.

» Les fichiers deployment.yaml, service.yaml et ingress.yaml sont rendus
en manifestes Kubernetes complets (YAML). ' -info || scho ") Cannot connect to the cluster. Verify KUBE_CONFIG_CONTENT.®

4 Export pour déploiement ' L

» helm template frontend helm-front/ --values helm-front/values-
main.yaml > frontend-manifests.yaml

= Les manifestes générés a partir des templates sont exportés dans des
fichiers (frontend-manifests.yaml, backend-manifests.yaml) utilisés L e
ensuite pour le déploiement ou la validation. tags: [new-runner]

yaml || echo "backend not ready yet, skipping..."

Elément visuel

Capture d’eécran d’un k3s deploy reussi.

26

$ echo "=== Deploy frontend from YAML ==="

=== Deploy frontend from YAML ===

$ Kubectl apply -f frontend-manifests.yaml

Warning: rescurce services/frontend-frontend is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply sho
vld only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
service/frontend-frontend configured

Warning: resource deployments/frontend-frontend is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply
should only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched auvtomatically.
deployment.apps/frontend-frontend configured

Warning: rescurce ingresses/frontend-ingress is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply sho
vld only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
ingress.networking.k8s.io/frontend-ingress configured

% echo "=== Deploy backend from YAML ==="

=== Deploy backend from YAML ===

$ kubectl apply -f backend-manifests.yaml || echo "backend not ready yet, skipping..."

Warning: rescurce services/backend-backend is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply shoul
d only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
service/backend-backend configured

Warning: rescurce deployments/backend-backend is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply sh
ould only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched avtomatically.
deployment.apps/backend-backend configured

Warning: resource ingresses/backend-ingress is missing the kubectl.kubernetes.io/last-applied-configuration annotation which is required by kubectl apply. kubectl apply shou
1d only be used on resources created declaratively by either kubectl create --save-config or kubectl apply. The missing annotation will be patched automatically.
ingress.networking.k8s.io/backend-ingress configured

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS NODE NOMINATED NODE READINESS GATES
backend-backend-B49F8Ff995f-chkkdk 1/1 Running (69m ago) A2 .4, ip-172-31-18-225 <none> <nanes
bobapp-back-main-backend-7bbb4998c5-87gpm 1/1 Terminating (9d ago) L42.8., ip-172-31-22-93 <none> <none>
bobapp-back-main-backend-7bbb4998c5-f25%g 1/1 Terminating (9d ago) 42,2, ip-172-31-24-140 <none> <none>
bobapp-back-main-backend-7bbb4998c5-m9szd 1/1 Terminating ip-172-31-29-130 <none> <none>
bobapp-back-main-backend-7bbb4998c5-rc7]7 1/1 Running (69m ago) L4204, ip-172-31-18-225 <none> <none>
bobapp-front-main-frontend-86676cfdff-4tncg 1/1 Terminating ip-172-31-29-130 <none> <none>
bobapp-front-main-frontend-86676cfdff-ddpbr 1/1 Terminating (9d ago) 42,2, ip-172-31-24-140 <none> <none»
bobapp-front-main-frontend-8&676cfdff-1hmgs 1/1 Terminating (9d ago) 42,8, ip-172-31-22-93 <none> <none>
bobapp-front-main-frontend-86676cfdff-q4cgg 1/1 Running (69m ago) L4204, ip-172-31-18-225 <none> <none>
frontend-frontend-866T76cfdff-mfkgs 1/1 Running (69m ago) 424, ip-172-31-18-225 <none> <nones

1
3
1
0]
3
7]
1
3
3
1

Job suvcceeded

Déploiement de l’'infrastructure avec
Terraform et Ansible

Terraform .H'

« Provisionnement codifié : création automatique du cluster EKS AWS, VPC, sous-
réseaux et réles IAM.

« Reproductibilité garantie : chaque exécution applique les mémes regles
d’infrastructure.

» Gestion du changement : suivi versionné des évolutions infra via GitLab.

Ansible W
- Déploiement applicatif : installation des charts Helm (frontend et backend) sur le
cluster provisionné.
« Intégration fluide : récupération du nom du cluster depuis Terraform et passage
comme variable aux playbooks.
» Flexibilité : gestion fine de la configuration via les collections amazon.aws,
community.aws, kubernetes.core.

ams_eks_node_group.this: Still creating... [3a50s elapsed)
—mode_group.this: 5till creating... [4eBs elapsed]
! aws_eks_node_group.this: 5till creating... [4ml0s elapsed]
2 aws_eks_node_group.this: 5till creating... [4m20s elapsed)
7 aws_eks_node_group.this: 5till cresting... [4n38s elapsed]
aws_eks_node_group.this: Still creating... [4m40s elapsed]

1 aws_eks_no " i Creation complete afier %8 [dd=oc-p7-cluster:oc-p7-cluster-node-group]

8 ch

WLGWpoVLNHRUFCELh 12 5 O QNANGKE R 2 pXVEJY TUEBRIEVIRE dBVE L 3dRRUF SSUNWREF QLR InTL
XVWREZLIF X0k JTME xWYRIEYnNCY3L { UVEak : 1 ek 1BMEADUIFRUGLMGRR QTRJQKFROT 2 i
BOVKRZ5LQ] FHUNE SWHF§Y {E4TIE &amv!

@ Point clé

. - P . N y , . SKVTQEdL hYBU2H2ER SEIENFULRJRKLDGVRFLABTLSOK™
Synergie Terraform + Ansible : démonstration concréte d’'un déploiement de bout endpodnt = "htt 13062 : Rt
en bout, de linfrastructure jusqu’aux applications, dans une seule étape du pipeline

CI/CD.

me = "oc-pT7-cluster®
ole_arn = **
rity_group_lid = "sg-BebT566470a8521e3"
[

bnet-85bd2adSf17cbB2C",
"subnet-88dad14s 9,
r "subnet-8¥%clidedhesf21le"”,
3)

PLAY [Deploy app to EKS with Helm] i

! TASH [Conmfigure RKUuBECTL For EKS] skt bbb o b ki ik
@ changed: [127.8.8.1]
7 TASH [Wait for EES cluster to be ready] sk i b
ok: [127.08.6.1]
TASH [Deploy fronténd via HeLm] ki e i
changed: [127.8.8.1)
T TASH [Deéplay backend via HELE] b i i i i A e
changed: [127.8.8.1)
PLAY RECAP oo i ot i e b i ok el oo i i i
127.8.0.1 ¢ ok=3 changeds=4 unreachable=0 failed=a skipped=0 rescued=n ignored=0

Elément visuel

Capture d’écran d’un terraform apply réussi (cluster créé).

Documents O
presenter

Document préparatoire Plande CD Guide des bonnes pratiques

A

A A

https://acrobat.adobe.com/id/urn:aaid:sc:eu:e7ef03d6-2584-41e7-a8f1-1845ae441ae5
https://acrobat.adobe.com/id/urn:aaid:sc:EU:ba6b7a19-ce81-495e-bdc6-64d6fcf907a6
https://acrobat.adobe.com/id/urn:aaid:sc:EU:9e1f9576-2131-425e-8a43-6cdb6ffc4663

Aolt 2025

